skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carvalho, Leila"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In wildfire-prone coastal Santa Barbara, California, downslope winds observed on the southern slopes of the east-west oriented Santa Ynez Mountains are known as Sundowner winds (or Sundowners). One important feature of Sundowners is the remarkable spatial and temporal variability in lee slope jet characteristics. Besides the intensity of the flow approaching the mountain range, the acceleration of the lee slope jet can be influenced by reflected gravity waves associated with one or more of the following mechanisms: a self-induced critical level, an inversion close to mountaintop, and the presence of a mean-state critical level (MSCL). The relative contribution of these mechanisms to the enhancement of Sundowners is yet unknown. This study uses 32-yr simulations (hourly, 1-km grid spacing) complemented with observations collected during the Sundowner Winds Experiment (SWEX) to better quantify the relative contribution of these mechanisms and to quantify the importance of MSCLs. We show that when an MSCL is present below 5 km, less atmospheric forcing is necessary to attain similar lee-slope jet strengths compared to when MSCLs are absent or above 5 km. This was evidenced from simulations and verified with observations. Although MSCLs during Sundowners occur year-round, their relative frequency increases in summer, when temperatures are high and fuels are dry, enhancing wildfire risk. Properly identifying these processes contributes to improved understanding and predictability of Sundowners and many other hazardous downslope windstorms in coastal environments. 
    more » « less
    Free, publicly-accessible full text available December 27, 2025
  2. Abstract The presence of an aerosol layer in the upper troposphere/lower stratosphere (UT/LS) in South America was identified with the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2). This layer, which we shall refer to as the South American tropopause aerosol layer (SATAL), was identified over the Amazon basin at altitudes between 11 and 14 km. It exhibits a seasonal behavior similar to the Asian tropopause aerosol layer (ATAL) and the North American tropopause aerosol layer (NATAL). The SATAL is observed from October to March, coinciding with the presence of the South American monsoon. It forms first in the eastern Amazon basin in October, then moves to the southern Amazon, where it weakens in December–January and finally dissipates in February–March. We hypothesize that two main factors influence the SATAL formation in the UT/LS: 1) the source of aerosols from Africa and 2) the updraft mass flux from deep convective systems during the active phase of the South American monsoon system that transports aerosols to the UT/LS. Further satellite observations of aerosols and field campaigns are needed to provide useful information to find the origin and composition of the aerosols in the UT/LS during the South American monsoon. 
    more » « less
  3. Abstract Northerly low-level jets (LLJ) along the eastern Andes are important conduits of moisture transport and play central roles in modulating precipitation in South America. This study further investigates the variability of the LLJ during extended austral summers. A new method characterizes the spatial extent of the LLJ and finds four distinct types: Central, Northern, Andes and Peru. We show the existence of specific evolutions such that the LLJ may initiate in the central region, expands along the Andes and terminates in the northern region. Conversely, the LLJ may propagate from north-to-south. The spatiotemporal evolution of the LLJ is remotely forced by Rossby wave trains propagating from the Pacific Ocean towards South America, and the different phases of the wave trains favor the occurrences of Central, Northern or Andes types. Occurrences of Central and Northern types are more frequent in El Niño and La Niña years, respectively. The persistence of precipitation is shown to be directly related to the persistence of the LLJ. Lastly, the Madden-Julian Oscillation plays an important role in generating wave trains modulating the frequency of LLJ, especially the Central type. 
    more » « less
  4. Surface winds over California can compound fire risk during autumn, yet their long-term trends in the face of decadal warming are less clear compared to other climate variables like temperature, drought, and snowmelt. To determine where and how surface winds are changing most, this article uses multiple reanalyses and Remote Automated Weather Stations (RAWS) to calculate autumn 10 m wind speed trends during 1979–2020. Reanalysis trends show statistically significant increases in autumn night-time easterlies on the western slopes of the Sierra Nevada. Although downslope windstorms are frequent to this region, trends instead appear to result from elevated gradients in warming between California and the interior continent. The result is a sharper horizontal temperature gradient over the Sierra crest and adjacent free atmosphere above the foothills, strengthening the climatological nocturnal katabatic wind. While RAWS records show broad agreement, their trend is likely influenced by year-to-year changes in the number of observations. 
    more » « less
  5. Each year, wildfires ravage the western U.S. and change the lives of millions of inhabitants. Situated in southern California, coastal Santa Barbara has witnessed devastating wildfires in the past decade, with nearly all ignitions started by humans. Therefore, estimating the risk imposed by unplanned ignitions in this fire-prone region will further increase resilience toward wildfires. Currently, a fire-risk map does not exist in this region. The main objective of this study is to provide a spatial analysis of regions at high risk of fast wildfire spread, particularly in the first two hours, considering varying scenarios of ignition locations and atmospheric conditions. To achieve this goal, multiple wildfire simulations were conducted using the FARSITE fire spread model with three ignition modeling methods and three wind scenarios. The first ignition method considers ignitions randomly distributed in 500 m buffers around previously observed ignition sites. Since these ignitions are mainly clustered around roads and trails, the second method considers a 50 m buffer around this built infrastructure, with ignition points randomly sampled from within this buffer. The third method assumes a Euclidean distance decay of ignition probability around roads and trails up to 1000 m, where the probability of selection linearly decreases further from the transportation paths. The ignition modeling methods were then employed in wildfire simulations with varying wind scenarios representing the climatological wind pattern and strong, downslope wind events. A large number of modeled ignitions were located near the major-exit highway running north–south (HWY 154), resulting in more simulated wildfires burning in that region. This could impact evacuation route planning and resource allocation under climatological wind conditions. The simulated fire areas were smaller, and the wildfires did not spread far from the ignition locations. In contrast, wildfires ignited during strong, northerly winds quickly spread into the wildland–urban interface (WUI) toward suburban and urban areas. 
    more » « less
  6. Massive wildfires and extreme fire behavior are becoming more frequent across the western United States, creating a need to better understand how megafire behavior will evolve in our warming world. Here, the fire spread model Prometheus is used to simulate the initial explosive growth of the 2020 August Complex, which occurred in northern California (CA) mixed conifer forests. High temperatures, low relative humidity, and daytime southerly winds were all highly correlated with extreme rates of modeled spread. Fine fuels reached very dry levels, which accelerated simulation growth and heightened fire heat release (HR). Model sensitivity tests indicate that fire growth and HR are most sensitive to aridity and fuel moisture content. Despite the impressive early observed growth of the fire, shifting the simulation ignition to a very dry September 2020 heatwave predicted a >50% increase in growth and HR, as well as increased nighttime fire activity. Detailed model analyses of how extreme fire behavior develops can help fire personnel prepare for problematic ignitions. 
    more » « less
  7. Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions. 
    more » « less